Predictive Maintenance of Turbofan Engines using Federated Learning with PySyft and PyGrid

Is it possible to benefit from the wonders of machine learning without having direct access to data? Today, machine learning can be used to

OpenMined + apheris AI Partnership for PyTorch Mobile Federated Learning

Today, we’re very excited to announce our Use Case partnership with apheris AI to deploy the very first open-source system for private federated learning on server, web, and mobile at scale.

Introduction to Federated Learning and Privacy Preservation using PySyft and PyTorch

Federated Learning and Additive Secret Sharing using the PySyft framework

Announcing the OpenMined-PyTorch Federated Learning Fellowships

We’re very excited to announce the next round of grants sponsored by the PyTorch team! This grant will focus on developing “worker libraries”, allowing PySyft code to be executed in other environments like a mobile phone or web browser.

Asynchronous Federated Learning in PySyft

In this post, we provide a showcase of applying federated learning using PySyft. PySyft is an open source python library for secure and priv

Privacy-Preserving AI in Medical Imaging: Federated Learning, Differential Privacy, and Encrypted Computation

In medical imaging, necessary privacy concerns limit us from fully maximizing the benefits of AI in our research. These modern privacy techniques could allow us to train our models on encrypted data from multiple institutions, hospitals, and clinics without sharing the patient data.

Federated Learning of a Recurrent Neural Network on Raspberry PIs

In this article, you are going to learn how to setup PySyft on a Raspberry PI and how to train a Recurrent Neural Network in a federated way.

Deep Learning -> Federated Learning in 10 Lines of PyTorch + PySyft

Deep Learning -> Federated Learning in 10 Lines of PyTorch + PySyft