Predictive Maintenance of Turbofan Engines using Federated Learning with PySyft and PyGrid

Is it possible to benefit from the wonders of machine learning without having direct access to data? Today, machine learning can be used to

Introduction to Federated Learning and Privacy Preservation using PySyft and PyTorch

Federated Learning and Additive Secret Sharing using the PySyft framework

Split Neural Networks on PySyft and PyTorch

Summary: In this blog we are going to provide an introduction into a new decentralised learning methodology called, ‘Split Neural Networks’.

Meet OpenMined's new PyTorch-OpenMined Fellows

We’re very excited to announce the recipients of the latest round of open-source software development grants in the OpenMined community, gen

Introducing PySyft TensorFlow

Support for TensorFlow in PySyft!

Asynchronous Federated Learning in PySyft

In this post, we provide a showcase of applying federated learning using PySyft. PySyft is an open source python library for secure and priv

Privacy-Preserving AI in Medical Imaging: Federated Learning, Differential Privacy, and Encrypted Computation

In medical imaging, necessary privacy concerns limit us from fully maximizing the benefits of AI in our research. These modern privacy techniques could allow us to train our models on encrypted data from multiple institutions, hospitals, and clinics without sharing the patient data.

Encrypted Training with PyTorch + PySyft

Encrypted Training of Deep Learning models with PyTorch + PySyft on MNIST

Federated Learning of a Recurrent Neural Network on Raspberry PIs

In this article, you are going to learn how to setup PySyft on a Raspberry PI and how to train a Recurrent Neural Network in a federated way.

Encrypted Deep Learning Classification with PyTorch & PySyft

Encrypted Deep Learning Classification with PyTorch & PySyft in < 33ms on MNIST